Idempotence of the Core Operator

Taking the core twice gives the same set: core(core(Ω))=core(Ω).
Idempotence of the Core Operator

Let XX be a and let ΩX\Omega\subset X be .

Corollary:

core(core(Ω))=core(Ω). \operatorname{core}(\operatorname{core}(\Omega))=\operatorname{core}(\Omega).

Here denotes the algebraic interior. This follows from : once a point is in core(Ω)\operatorname{core}(\Omega), small segment perturbations remain inside, so taking the core again does not remove any points.