Hölder inequality (finite sums)

∑|x_i y_i| is bounded by the product of ℓ^p and ℓ^q norms for conjugate exponents
Hölder inequality (finite sums)

Proposition (Hölder inequality for finite sums). Let xi,yiRx_i,y_i\in\mathbb{R} for i=1,,mi=1,\dots,m. If p>1p>1 and q>1q>1 satisfy 1/p+1/q=11/p+1/q=1, then

i=1mxiyi(i=1mxip)1/p(i=1myiq)1/q. \sum_{i=1}^m |x_i y_i| \le \left(\sum_{i=1}^m |x_i|^p\right)^{1/p} \left(\sum_{i=1}^m |y_i|^q\right)^{1/q}.

Context. This is the fundamental inequality behind duality of p\ell^p spaces and many estimates in analysis. It can be proved using the (or Young’s inequality).

Proof sketch. Normalize so that xip=1\sum |x_i|^p=1 and yiq=1\sum |y_i|^q=1 (otherwise scale). Apply weighted AM–GM with θ=1/p\theta=1/p to a=xipa=|x_i|^p and b=yiqb=|y_i|^q to get

xiyixipp+yiqq. |x_i y_i|\le \frac{|x_i|^p}{p}+\frac{|y_i|^q}{q}.

Sum over ii and undo the normalization.