Domain, epigraph, and proper function

dom(f) is where f is finite; epi(f) is the set above the graph; proper means dom(f)≠∅
Domain, epigraph, and proper function

Let XX be a vector space and let f:XRf:X\to \mathbb{R} be an extended-real-valued function (see ).

  • The domain of ff is dom(f):={xX:f(x)<}. \mathrm{dom}(f):=\{x\in X: f(x)<\infty\}.
  • The epigraph of ff is epi(f):={(x,α)X×R:f(x)α}. \mathrm{epi}(f):=\{(x,\alpha)\in X\times\mathbb{R}: f(x)\le \alpha\}.

The function ff is proper if dom(f)\mathrm{dom}(f)\neq\emptyset.

Context. The epigraph turns function properties into geometric properties of sets; convexity of ff is defined by convexity of epi(f)\mathrm{epi}(f) (see ).