Distance function to a set

d_Ω(x)=inf{||x−w||: w∈Ω} in a normed space
Distance function to a set

Let (X,)(X,\|\cdot\|) be a and let ΩX\Omega\subset X be nonempty. The distance function to Ω\Omega is the real-valued map dΩ:X[0,)d_\Omega:X\to[0,\infty) defined by

dΩ(x):=inf{xw:wΩ}. d_\Omega(x):=\inf\{\|x-w\|: w\in \Omega\}.

Context. Distance functions quantify constraint violation and are fundamental in projection methods and variational analysis.

Basic properties.

  • dΩ(x)=0d_\Omega(x)=0 iff xx belongs to Ω\overline{\Omega}.
  • dΩd_\Omega is 1-Lipschitz: dΩ(x)dΩ(y)xy|d_\Omega(x)-d_\Omega(y)|\le \|x-y\|.

Convexity. If Ω\Omega is , then dΩd_\Omega is convex. Conversely, if Ω\Omega is closed and dΩd_\Omega is convex, then Ω\Omega is convex (standard exercise-level fact).

Examples:

  • If Ω={0}\Omega=\{0\}, then dΩ(x)=xd_\Omega(x)=\|x\|.
  • If Ω\Omega is a closed ball, dΩ(x)d_\Omega(x) is the excess of xx0\|x-x_0\| over the radius, truncated below by 0.