Direct sum of subspaces

A sum of subspaces with trivial intersection
Direct sum of subspaces

Let XX be a vector space and let M,NM,N be .

Let Y:=M+NY:=M+N be their (set) sum. We say that YY is the direct sum of MM and NN if

MN={0}. M\cap N=\{0\}.

In this case we write

Y=MN. Y=M\oplus N.

Direct sums formalize “adding independent directions”: if MN={0}M\cap N=\{0\}, then no nonzero vector lies in both subspaces. The key structural property is uniqueness of decomposition, captured in .

Examples:

  • In R2\mathbb{R}^2, let M=span{(1,0)}M=\operatorname{span}\{(1,0)\} and N=span{(0,1)}N=\operatorname{span}\{(0,1)\}. Then R2=MN\mathbb{R}^2=M\oplus N.
  • In R3\mathbb{R}^3, the xyxy-plane and the zz-axis form a direct sum: R3=R2×{0}  span{(0,0,1)}\mathbb{R}^3=\mathbb{R}^2\times\{0\}\ \oplus\ \operatorname{span}\{(0,0,1)\}.
  • If M=N{0}M=N\neq\{0\}, then M+N=MM+N=M but MN=M{0}M\cap N=M\neq\{0\}, so this is not a direct sum.