Convexity on a convex subset via extension

Define convexity on Ω by extending f to X with value ∞ outside Ω
Convexity on a convex subset via extension

Let XX be a vector space, let ΩX\Omega\subset X be a nonempty , and let f:ΩRf:\Omega\to\mathbb{R} be a real-valued function.

Define the extension f~:XR\tilde f:X\to\mathbb{R} by

f~(x)={f(x),xΩ,,xΩ. \tilde f(x)= \begin{cases} f(x), & x\in\Omega,\\ \infty, & x\notin\Omega. \end{cases}

We say that ff is convex on Ω\Omega if f~\tilde f is a on XX.

Equivalently: for all x,yΩx,y\in\Omega and λ(0,1)\lambda\in(0,1),

f(λx+(1λ)y)λf(x)+(1λ)f(y). f(\lambda x+(1-\lambda)y)\le \lambda f(x)+(1-\lambda)f(y).

Context. This convention packages “convexity + domain restriction” into a single extended-real function, aligning convexity on subsets with epigraph-based convexity.

Example. If Ω\Omega is the unit ball in a normed space and f(x)=xf(x)=\|x\| on Ω\Omega, then f~\tilde f encodes the constraint xΩx\in\Omega by assigning \infty outside.