Convex hull via convex combinations

The convex hull equals the set of all finite convex combinations of points in Ω
Convex hull via convex combinations

Theorem. Let ΩX\Omega\subset X be a nonempty subset of a real vector space XX. Then the can be described as

co(Ω)={i=1mλixi: mN, xiΩ, λi0, i=1mλi=1}. \mathrm{co}(\Omega)=\left\{\sum_{i=1}^m \lambda_i x_i:\ m\in\mathbb{N},\ x_i\in\Omega,\ \lambda_i\ge 0,\ \sum_{i=1}^m\lambda_i=1\right\}.

Context. This gives a constructive description of convex hulls: start from points in Ω\Omega and take all possible .

Proof sketch. Let CC be the set of all finite convex combinations of points in Ω\Omega. By , CC is convex and contains Ω\Omega, hence co(Ω)C\mathrm{co}(\Omega)\subset C by minimality. Conversely, any convex set containing Ω\Omega must contain all convex combinations of points in Ω\Omega, so Cco(Ω)C\subset \mathrm{co}(\Omega).