Convex hull

The smallest convex set containing a given set
Convex hull

Let XX be a real vector space and let ΩX\Omega\subset X. The convex hull of Ω\Omega, denoted co(Ω)\mathrm{co}(\Omega), is defined as the intersection of all sets containing Ω\Omega:

co(Ω):={CX: C is convex and ΩC}. \mathrm{co}(\Omega):=\bigcap\{C\subset X:\ C\text{ is convex and }\Omega\subset C\}.

Context. By , this definition ensures co(Ω)\mathrm{co}(\Omega) is convex. The convex hull is the basic “convexification” operator.

Examples:

  • If Ω={x1,x2}\Omega=\{x_1,x_2\}, then co(Ω)=[x1,x2]\mathrm{co}(\Omega)=[x_1,x_2] (the segment).
  • If Ω\Omega is the unit circle in R2\mathbb{R}^2, then co(Ω)\mathrm{co}(\Omega) is the closed unit disk.
  • If Ω\Omega is already convex, then co(Ω)=Ω\mathrm{co}(\Omega)=\Omega.