Convergence of a sequence in a metric space

A sequence converges if points eventually lie arbitrarily close to the limit
Convergence of a sequence in a metric space

Let (X,d)(X,d) be a . A sequence (xn)(x_n) in XX converges to a point aXa\in X if

(ε>0)(NN)(nN): d(xn,a)<ε. (\forall \varepsilon>0)(\exists N\in\mathbb{N})(\forall n\ge N):\ d(x_n,a)<\varepsilon.

We write limnxn=a\lim_{n\to\infty}x_n=a or xnax_n\to a.

Convergence in metric spaces is the foundation for defining and for studying .

Examples:

  • In R\mathbb{R}, xn=1/nx_n=1/n converges to 00.
  • In any metric space, a constant sequence xn=xx_n=x converges to xx.
  • In the discrete metric, xnax_n\to a iff xn=ax_n=a for all sufficiently large nn.