Convergence in normed spaces

A sequence converges if the norm of its difference to the limit goes to zero
Convergence in normed spaces

Let (X,)(X,\|\cdot\|) be a .

A sequence (xn)(x_n) in XX converges to xXx\in X (in norm) if

xnx0as n. \|x_n-x\|\to 0 \quad \text{as } n\to\infty.

Equivalently: for every ε>0\varepsilon>0 there exists NN such that xnx<ε\|x_n-x\|<\varepsilon for all nNn\ge N.

Context. By , this is exactly .

Examples:

  • In R2\mathbb{R}^2 with 2\|\cdot\|_2, the sequence xn=(1/n,0)x_n=(1/n,0) converges to (0,0)(0,0).
  • In C([0,1])C([0,1]) with \|\cdot\|_\infty, the functions fn(t)=t/nf_n(t)=t/n satisfy fn0=1/n0\|f_n-0\|_\infty=1/n\to 0, so fn0f_n\to 0.
  • A sequence may converge under one norm and not under another in infinite-dimensional spaces (choice of norm matters).