Convergence implies convergence of norms

If x_n→x, then ||x_n||→||x||
Convergence implies convergence of norms

Proposition. If (xn)(x_n) to xx in a normed space, then

xnx. \|x_n\|\to \|x\|.

Context. This expresses continuity of the norm map xxx\mapsto\|x\|.

Proof sketch. By the ,

xnxxnx0, \big|\|x_n\|-\|x\|\big|\le \|x_n-x\|\to 0,

hence xnx\|x_n\|\to \|x\|.