Characterization of direct sums

A sum is direct iff every element has a unique decomposition into components
Characterization of direct sums

Theorem. Let MM and NN be linear subspaces of a vector space XX, and let YXY\subset X. Then

Y=MN Y=M\oplus N

if and only if every yYy\in Y admits a unique representation

y=a+bwith aM, bN. y=a+b \quad\text{with } a\in M,\ b\in N.

Context. This result explains why behave like “coordinate decompositions” with respect to the two subspaces.

Proof sketch.

  • (\Rightarrow) If y=a+b=a+by=a+b=a'+b' with a,aMa,a'\in M and b,bNb,b'\in N, then aa=bbMN={0}a-a'=b'-b\in M\cap N=\{0\}, so a=aa=a' and b=bb=b'.
  • (\Leftarrow) If every yy has a unique decomposition, then certainly YM+NY\subset M+N and M+NYM+N\subset Y (by definition of YY), and uniqueness forces MN={0}M\cap N=\{0\} since x=x+0=0+xx=x+0=0+x implies x=0x=0 for xMNx\in M\cap N.