Algebraic Interior (Core)

The algebraic analogue of interior for subsets of vector spaces
Algebraic Interior (Core)

Let XX be a real and let ΩX\Omega\subset X.

The algebraic interior (or core) of Ω\Omega is

core(Ω):={xΩ  vX, δ>0 s.t. x+tvΩ for all t<δ}. \operatorname{core}(\Omega):=\Big\{x\in\Omega \ \Big|\ \forall v\in X,\ \exists \delta>0\ \text{s.t.}\ x+tv\in\Omega\ \text{for all }|t|<\delta\Big\}.

Equivalently, xcore(Ω)x\in\operatorname{core}(\Omega) iff for every direction vXv\in X, one can move a small amount from xx in the direction vv and remain in Ω\Omega.

When XX is a and Ω\Omega is , we have

int(Ω)core(Ω)Ω, \operatorname{int}(\Omega)\subset \operatorname{core}(\Omega)\subset \Omega,

where int(Ω)\operatorname{int}(\Omega) is the usual . See also for the dual notion.

Examples:

  • If Ω\Omega is an open ball in a normed space, then core(Ω)=Ω\operatorname{core}(\Omega)=\Omega.
  • If Ω\Omega is a linear subspace LL, then core(L)=L\operatorname{core}(L)=L.