Algebra of limits in normed spaces

Limits commute with addition and scalar multiplication
Algebra of limits in normed spaces

Proposition. Let (X,)(X,\|\cdot\|) be a normed space.

  1. If xnxx_n\to x and ynyy_n\to y, then xn+ynx+yx_n+y_n\to x+y.
  2. If xnxx_n\to x and αnα\alpha_n\to \alpha (in R\mathbb{R} or C\mathbb{C}), then αnxnαx\alpha_n x_n\to \alpha x.

Context. These are the basic “limit laws” for sequences in normed linear settings.

Proof sketch.

  1. By the triangle inequality, (xn+yn)(x+y)xnx+yny0. \|(x_n+y_n)-(x+y)\|\le \|x_n-x\|+\|y_n-y\|\to 0.
  2. Write αnxnαxαn(xnx)+(αnα)x=αnxnx+αnαx. \|\alpha_n x_n-\alpha x\|\le \|\alpha_n(x_n-x)\|+\|(\alpha_n-\alpha)x\| =|\alpha_n|\,\|x_n-x\|+|\alpha_n-\alpha|\,\|x\|. Use that (αn)(\alpha_n) is bounded and both factors tend to 00.