Affine mapping

A map of the form x↦Ax+b, i.e., linear plus a translation
Affine mapping

Let X,YX,Y be real vector spaces. A mapping B:XYB:X\to Y is affine if there exist a A:XYA:X\to Y and a vector bYb\in Y such that

B(x)=A(x)+bfor all xX. B(x)=A(x)+b\quad\text{for all }x\in X.

Context. Affine maps preserve “straightness”: they map to line segments, and therefore preserve convexity properties (see ).

Examples:

  • Any translation B(x)=x+bB(x)=x+b is affine (take A=IdA=\mathrm{Id}).
  • Any linear map is affine (take b=0b=0).
  • In Rn\mathbb{R}^n, B(x)=Mx+bB(x)=Mx+b with a fixed matrix MM and vector bb is affine.