Affine Hull and Affine Combination

The smallest affine set containing Ω, and linear combinations with coefficients summing to 1.
Affine Hull and Affine Combination

Let XX be a and let ΩX\Omega\subset X.

The affine hull of Ω\Omega is the intersection of all containing Ω\Omega:

aff(Ω):={CXC is affine and ΩC}. \operatorname{aff}(\Omega):=\bigcap\{C\subset X\mid C\text{ is affine and }\Omega\subset C\}.

A vector xXx\in X is an affine combination of ω1,,ωmX\omega_1,\dots,\omega_m\in X if

x=i=1mλiωiwithi=1mλi=1. x=\sum_{i=1}^m \lambda_i\omega_i \quad\text{with}\quad \sum_{i=1}^m \lambda_i=1.

Affine combinations are the natural building blocks of affine sets, just as are for convex sets.

Examples:

  • If m=2m=2 and λ1=λ\lambda_1=\lambda, λ2=1λ\lambda_2=1-\lambda, then x=λω1+(1λ)ω2x=\lambda\omega_1+(1-\lambda)\omega_2 parameterizes the line through ω1,ω2\omega_1,\omega_2 as λ\lambda varies over R\mathbb{R}.
  • In Rn\mathbb{R}^n, aff(Ω)\operatorname{aff}(\Omega) is the smallest affine subspace containing Ω\Omega.