Zero derivative implies constant

If f' vanishes everywhere on an interval, the function is constant
Zero derivative implies constant

Let f:[a,b]Rf:[a,b]\to\mathbb{R} be on [a,b][a,b] and on (a,b)(a,b).

Corollary: If f(x)=0f'(x)=0 for all x(a,b)x\in(a,b), then ff is constant on [a,b][a,b].

Connection to parent theorem: Apply the : for any x<yx<y, there exists c(x,y)c\in(x,y) with f(y)f(x)=f(c)(yx)=0f(y)-f(x)=f'(c)(y-x)=0.