Uniform convergence implies uniform Cauchy

A uniformly convergent sequence of functions is uniformly Cauchy
Uniform convergence implies uniform Cauchy

Uniform convergence implies uniform Cauchy: Let XX be a set and let (fn)(f_n) be functions fn:X(Y,d)f_n:X\to (Y,d) into a . If fnff_n\to f on XX, then (fn)(f_n) is : ε>0  N  m,nN: supxXd(fn(x),fm(x))<ε. \forall\varepsilon>0\;\exists N\;\forall m,n\ge N:\ \sup_{x\in X} d(f_n(x),f_m(x))<\varepsilon.

This is the Cauchy criterion direction for uniform convergence and is often the easiest way to prove uniform convergence: show uniform Cauchy in a codomain.

Proof sketch: Fix ε>0\varepsilon>0. Choose NN so that supxd(fn(x),f(x))<ε/2\sup_x d(f_n(x),f(x))<\varepsilon/2 for all nNn\ge N. Then for m,nNm,n\ge N, d(fn(x),fm(x))d(fn(x),f(x))+d(f(x),fm(x))<ε, d(f_n(x),f_m(x))\le d(f_n(x),f(x))+d(f(x),f_m(x))<\varepsilon, uniformly in xx.