Uniform convergence implies pointwise convergence

Uniform convergence is stronger than pointwise convergence
Uniform convergence implies pointwise convergence

Corollary: Let XX be a set and let (fn)(f_n) be functions fn:XYf_n:X\to Y into a (Y,d)(Y,d). If fnff_n\to f on XX, then fnff_n\to f on XX; i.e., for every xXx\in X, fn(x)f(x). f_n(x)\to f(x).

Connection to parent theorem: Uniform convergence means supxXd(fn(x),f(x))0\sup_{x\in X} d(f_n(x),f(x))\to 0. In particular, for each fixed xx, d(fn(x),f(x))supXd(fn,f)0d(f_n(x),f(x))\le \sup_X d(f_n,f)\to 0.