Taylor polynomial

The polynomial formed from the first k derivatives of f at a point a.
Taylor polynomial

Let ff be a real- (or complex-) valued function defined on an containing aRa\in\mathbb{R}, and assume that f(j)(a)f^{(j)}(a) exists for 0jk0\le j\le k (see ). The Taylor polynomial of degree kk of ff at aa is

Tkf(x;a):=j=0kf(j)(a)j!(xa)j. T_k f(x;a) := \sum_{j=0}^k \frac{f^{(j)}(a)}{j!}(x-a)^j.

Taylor polynomials provide the canonical local polynomial approximation to ff near aa. Taylor’s theorem quantifies the error via a .

Examples:

  • For f(x)=exf(x)=e^x, T2f(x;0)=1+x+x22T_2 f(x;0)=1+x+\frac{x^2}{2}.
  • For f(x)=sinxf(x)=\sin x, T3f(x;0)=xx33!T_3 f(x;0)=x-\frac{x^3}{3!}.
  • For f(x)=11xf(x)=\frac{1}{1-x}, the Taylor polynomial at 00 is Tkf(x;0)=j=0kxjT_k f(x;0)=\sum_{j=0}^k x^j.