Surjective function

A function whose image equals its codomain.
Surjective function

A f:XYf:X\to Y is surjective (or onto) if

yY, xX such that f(x)=y.\forall y\in Y,\ \exists x\in X\ \text{such that}\ f(x)=y.

Equivalently, f(X)=Yf(X)=Y (the equals the ).

Surjectivity depends on the specified codomain YY, not just on the rule xf(x)x\mapsto f(x). Many constructions in analysis naturally produce surjections (e.g., quotient maps, parameterizations) and surjectivity is required for an to be defined on all of YY.

Examples:

  • sin:R[1,1]\sin:\mathbb{R}\to[-1,1] is surjective.
  • The same rule sin:RR\sin:\mathbb{R}\to\mathbb{R} is not surjective since no real xx satisfies sinx=2\sin x = 2.
  • f:R[0,)f:\mathbb{R}\to[0,\infty), f(x)=x2f(x)=x^2 is surjective.