Supremum approximation lemma

A supremum can be approached from below by points in the set
Supremum approximation lemma

Supremum approximation lemma: Let ERE\subseteq\mathbb{R} be nonempty and , and let s=supEs=\sup E. Then:

  • for every ε>0\varepsilon>0 there exists xEx\in E such that sε<xs, s-\varepsilon < x \le s,
  • equivalently, there exists a sequence (xn)(x_n) in EE such that xnsx_n\to s.

This lemma is used constantly to turn the abstract existence of supE\sup E into a usable approximation statement (often in ε\varepsilon–arguments).

Examples:

  • If E=(0,1)E=(0,1), then supE=1\sup E=1, and one may take xn=11nx_n=1-\frac{1}{n}.
  • If E={xR:x2<2}E=\{x\in\mathbb{R}:x^2<2\}, then supE=2\sup E=\sqrt{2}, and the lemma guarantees a sequence xn2x_n\uparrow \sqrt{2} with xn2<2x_n^2<2.