Step function (on an interval)

A function constant on each subinterval of a finite partition.
Step function (on an interval)

Let [a,b]R[a,b]\subseteq\mathbb{R} and let PP be a partition a=x0<x1<<xn=ba=x_0<x_1<\cdots<x_n=b. A function φ:[a,b]R\varphi:[a,b]\to\mathbb{R} is a step function (with respect to PP) if for each i=1,,ni=1,\dots,n there exists a constant ciRc_i\in\mathbb{R} such that

φ(x)=cifor all x(xi1,xi).\varphi(x)=c_i\quad\text{for all }x\in(x_{i-1},x_i).

(Values at the partition points xix_i can be assigned arbitrarily, since they do not affect Riemann integration.)

Step functions are the simplest nontrivial functions in Riemann integration. They approximate more general integrable functions from above and below via upper and lower sums.

Examples:

  • On [0,1][0,1], φ(x)=0\varphi(x)=0 for x[0,1/2)x\in[0,1/2) and φ(x)=1\varphi(x)=1 for x[1/2,1]x\in[1/2,1] is a step function.
  • Any constant function on [a,b][a,b] is a step function (take n=1n=1).
  • The function φ(x)=10x\varphi(x)=\lfloor 10x\rfloor on [0,1][0,1] is a step function with partition points 0,0.1,0.2,,10,0.1,0.2,\dots,1.