Set difference

The subset of one set obtained by removing elements belonging to another.
Set difference

The set difference (or relative complement) of BB in AA is

AB:={xA:xB}.A\setminus B := \{x\in A : x\notin B\}.

Set difference formalizes “AA with the elements of BB removed.” In analysis it appears in punctured neighborhoods (e.g., B(x,r){x}B(x,r)\setminus\{x\}) and in decompositions like (AB)A=BA(A\cup B)\setminus A = B\setminus A.

Examples:

  • {1,2,3}{2}={1,3}\{1,2,3\}\setminus\{2\}=\{1,3\}.
  • (0,2)(1,3)=(0,1](0,2)\setminus(1,3)=(0,1].
  • For any set AA, A=AA\setminus\varnothing = A and AA=A\setminus A=\varnothing.