Root Test

A series converges absolutely if the nth roots of term magnitudes have limsup less than 1
Root Test

Root Test: For a an\sum a_n (real or complex), define α=lim supnann.\alpha=\limsup_{n\to\infty}\sqrt[n]{|a_n|}.

  • If α<1\alpha<1, then an\sum a_n .
  • If α>1\alpha>1 (or α=\alpha=\infty), then an\sum a_n .
  • If α=1\alpha=1, the test is inconclusive.

The root test is well-suited for expressions like an=(something)n|a_n|=(\text{something})^n.

Proof sketch (optional): If α<1\alpha<1, choose rr with α<r<1\alpha<r<1. Then for large nn, anrn|a_n|\le r^n, and rn\sum r^n converges.