Let f:[a,b]→R be bounded, and let α:[a,b]→R be a function. For a partition P:a=x0<⋯<xn=b, define
Δαi:=α(xi)−α(xi−1).For each i, set
Mi:=x∈[xi−1,xi]supf(x),mi:=x∈[xi−1,xi]inff(x).The upper and lower Riemann–Stieltjes sums are
U(f,α;P):=i=1∑nMiΔαi,L(f,α;P):=i=1∑nmiΔαi.If α is increasing, one says f is Riemann–Stieltjes integrable with respect to α if
PsupL(f,α;P)=PinfU(f,α;P),and the common value is denoted
∫abfdα.The Riemann–Stieltjes integral generalizes the Riemann integral: taking α(x)=x recovers ∫abf(x)dx. It also encodes integration with respect to step functions (leading to sums) and is the classical precursor to Lebesgue–Stieltjes integration.
Examples:
- If α(x)=x, then ∫abfdα=∫abf(x)dx (Riemann integral).
- If α is constant, α(x)≡c, then Δαi=0 for all i and ∫abfdα=0.
- If α is a step function with a jump at c∈(a,b), then ∫abfdα reduces (under standard integrability assumptions) to a multiple of f(c) reflecting the jump size.