Riemann–Stieltjes integral

An integral ∫ f dα defined via limits of sums using increments of an integrator α.
Riemann–Stieltjes integral

Let f:[a,b]Rf:[a,b]\to\mathbb{R} be bounded, and let α:[a,b]R\alpha:[a,b]\to\mathbb{R} be a function. For a partition P:a=x0<<xn=bP:a=x_0<\cdots<x_n=b, define

Δαi:=α(xi)α(xi1).\Delta\alpha_i:=\alpha(x_i)-\alpha(x_{i-1}).

For each ii, set

Mi:=supx[xi1,xi]f(x),mi:=infx[xi1,xi]f(x).M_i:=\sup_{x\in[x_{i-1},x_i]} f(x),\qquad m_i:=\inf_{x\in[x_{i-1},x_i]} f(x).

The upper and lower Riemann–Stieltjes sums are

U(f,α;P):=i=1nMiΔαi,L(f,α;P):=i=1nmiΔαi.U(f,\alpha;P):=\sum_{i=1}^n M_i\,\Delta\alpha_i,\qquad L(f,\alpha;P):=\sum_{i=1}^n m_i\,\Delta\alpha_i.

If α\alpha is increasing, one says ff is Riemann–Stieltjes integrable with respect to α\alpha if

supPL(f,α;P)=infPU(f,α;P),\sup_P L(f,\alpha;P)=\inf_P U(f,\alpha;P),

and the common value is denoted

abfdα.\int_a^b f\,d\alpha.

The Riemann–Stieltjes integral generalizes the Riemann integral: taking α(x)=x\alpha(x)=x recovers abf(x)dx\int_a^b f(x)\,dx. It also encodes integration with respect to step functions (leading to sums) and is the classical precursor to Lebesgue–Stieltjes integration.

Examples:

  • If α(x)=x\alpha(x)=x, then abfdα=abf(x)dx\int_a^b f\,d\alpha=\int_a^b f(x)\,dx (Riemann integral).
  • If α\alpha is constant, α(x)c\alpha(x)\equiv c, then Δαi=0\Delta\alpha_i=0 for all ii and abfdα=0\int_a^b f\,d\alpha=0.
  • If α\alpha is a step function with a jump at c(a,b)c\in(a,b), then abfdα\int_a^b f\,d\alpha reduces (under standard integrability assumptions) to a multiple of f(c)f(c) reflecting the jump size.