Riemann–Stieltjes integrability theorem

A continuous integrand is Riemann–Stieltjes integrable against an increasing integrator
Riemann–Stieltjes integrability theorem

Riemann–Stieltjes integrability theorem: Let f:[a,b]Rf:[a,b]\to\mathbb{R} be , and let α:[a,b]R\alpha:[a,b]\to\mathbb{R} be increasing. Then the abfdα \int_a^b f\,d\alpha exists.

The Riemann–Stieltjes integral generalizes the (take α(x)=x\alpha(x)=x) and also encodes weighted sums (step-function α\alpha) and distribution-function-type . It is a standard bridge toward measure-theoretic integration.

Proof sketch: Continuity on [a,b][a,b] implies of ff. For a PP, the difference between upper and lower Riemann–Stieltjes sums is bounded by a weighted : U(f,P,α)L(f,P,α)iωi(α(xi)α(xi1)), U(f,P,\alpha)-L(f,P,\alpha)\le \sum_{i} \omega_i \bigl(\alpha(x_i)-\alpha(x_{i-1})\bigr), where ωi=sup[xi1,xi]finf[xi1,xi]f\omega_i=\sup_{[x_{i-1},x_i]} f-\inf_{[x_{i-1},x_i]} f. With P\|P\| small, uniform continuity makes each ωi\omega_i small, and the total weight sums to α(b)α(a)\alpha(b)-\alpha(a), forcing ULU-L arbitrarily small.