Restriction of a function

The same function viewed only on a specified subset of its domain.
Restriction of a function

Let f:XYf:X\to Y be a function and let AXA\subseteq X. The restriction of ff to AA is the function

fA:AY,fA(a):=f(a) for all aA.f|_A:A\to Y,\qquad f|_A(a):=f(a)\ \text{for all }a\in A.

Restrictions are used constantly in analysis to localize statements (e.g., continuity on a subset, behavior near a point, or defining inverses on domains where a function becomes injective).

Examples:

  • If f:RRf:\mathbb{R}\to\mathbb{R}, f(x)=x2f(x)=x^2, then f[0,):[0,)Rf|_{[0,\infty)}:[0,\infty)\to\mathbb{R} is injective.
  • If f(x)=sinxf(x)=\sin x on R\mathbb{R}, then f[π/2,π/2]f|_{[-\pi/2,\pi/2]} is bijective onto [1,1][-1,1].
  • If A=A=\varnothing, then f:Yf|_{\varnothing}:\varnothing\to Y is the unique function with empty domain.