Proper subset

A subset that is strictly smaller than the containing set.
Proper subset

A proper subset of a set BB is a subset AA of BB that is not equal to BB. Formally,

ABmeans(AB)  (AB).A \subsetneq B \quad\text{means}\quad (A\subseteq B)\ \land\ (A\neq B).

Proper inclusion \subsetneq indicates strict containment. In analysis it is used, for example, to describe dense proper subsets (e.g., QR\mathbb{Q}\subsetneq\mathbb{R}) and strict refinements of covers or partitions.

Examples:

  • QR\mathbb{Q}\subsetneq \mathbb{R}.
  • {0}\varnothing \subsetneq \{0\}.
  • {0}⊊̸{0}\{0\}\not\subsetneq \{0\} (it is a subset but not a proper subset).