Preimage (inverse image)

The set of inputs that a function maps into a given subset of the codomain.
Preimage (inverse image)

Let f:XYf:X\to Y be a function and let BYB\subseteq Y. The preimage (or inverse image) of BB under ff is

f1(B):={xX:f(x)B}X.f^{-1}(B):=\{x\in X : f(x)\in B\}\subseteq X.

The notation f1(B)f^{-1}(B) does not require ff to be invertible; it is defined for every function. Preimages interact well with set operations and are central in topology (continuity via preimages of open sets) and measure theory (measurability via preimages of measurable sets).

Examples:

  • If f:RRf:\mathbb{R}\to\mathbb{R}, f(x)=x2f(x)=x^2, then f1({1})={1,1}f^{-1}(\{1\})=\{-1,1\}.
  • For the same ff, f1((,1])=[1,1]f^{-1}((-\infty,1])=[-1,1].
  • If f(x)=x2f(x)=x^2, then f1((1,0))=f^{-1}((-1,0))=\varnothing since x20x^2\ge 0 for all xRx\in\mathbb{R}.