Pointwise convergence

A sequence of functions f_n converges pointwise if f_n(x)→f(x) for each x.
Pointwise convergence

Let XX be a and let (Y,dY)(Y,d_Y) be a . A sequence of functions fn:XYf_n:X\to Y converges pointwise to a function f:XYf:X\to Y if

xX,limndY(fn(x),f(x))=0.\forall x\in X,\quad \lim_{n\to\infty} d_Y\bigl(f_n(x),f(x)\bigr)=0.

One writes fn(x)f(x)f_n(x)\to f(x) for each fixed xx.

Pointwise convergence is the weakest common mode of convergence for functions. Many analytic properties ( , integrability, differentiation) are not preserved under pointwise limits without additional hypotheses. Compare with .

Examples:

  • On [0,1][0,1], let fn(x)=xnf_n(x)=x^n. Then fn(x)f(x)f_n(x)\to f(x) pointwise, where f(x)=0f(x)=0 for 0x<10\le x<1 and f(1)=1f(1)=1.
  • If fn(x)=1nsinxf_n(x)=\frac{1}{n}\sin x on R\mathbb{R}, then fn0f_n\to 0 pointwise (and uniformly).
  • If fn=1(0,1/n)f_n=\mathbf{1}_{(0,1/n)} on R\mathbb{R}, then fn0f_n\to 0 pointwise, but the “mass” near 00 illustrates why pointwise convergence can miss uniform control.