Partial sums

The finite sums s_N = ∑_{n=1}^N a_n associated to a series.
Partial sums

Given a sequence (an)(a_n) in R\mathbb{R} or C\mathbb{C}, the partial sums of the series n=1an\sum_{n=1}^\infty a_n are the numbers

sN:=n=1Nan(NN).s_N := \sum_{n=1}^N a_n\qquad (N\in\mathbb{N}).

A series is defined to converge precisely when its partial sums converge as NN\to\infty. Many convergence tests are statements about the behavior of (sN)(s_N).

Examples:

  • If an=1/2na_n=1/2^n, then sN=n=1N1/2n=12Ns_N=\sum_{n=1}^N 1/2^n = 1-2^{-N}.
  • If an=1a_n=1, then sN=Ns_N=N.
  • If an=(1)n+1a_n=(-1)^{n+1}, then s1=1s_1=1, s2=0s_2=0, s3=1s_3=1, s4=0s_4=0, so (sN)(s_N) does not converge.