Let f:E→R be a bounded
function and let A⊆E be nonempty. The oscillation of f on A is
osc(f;A):=HAHAHUGOSHORTCODE734s1HBHB{f(x):x∈A}−HAHAHUGOSHORTCODE734s2HBHB{f(x):x∈A}.For Riemann integration
, oscillation on subintervals controls the gap between upper
and lower sums
: on an interval
I, the contribution to U(f,P)−L(f,P) is the oscillation on I times the interval length.
Examples:
- If f is constant on A, then osc(f;A)=0.
- For f(x)=x on A=[0,1], osc(f;A)=1−0=1.
- For f=1Q on any nontrivial interval I⊂R, osc(f;I)=1−0=1.