Oscillation of a function

The quantity sup f − inf f on a set, measuring variation in values.
Oscillation of a function

Let f:ERf:E\to\mathbb{R} be a function and let AEA\subseteq E be nonempty. The oscillation of ff on AA is

osc(f;A):=HAHAHUGOSHORTCODE734s1HBHB{f(x):xA}HAHAHUGOSHORTCODE734s2HBHB{f(x):xA}.\operatorname{osc}(f;A):= \{f(x):x\in A\}- \{f(x):x\in A\}.

For , oscillation on subintervals controls the gap between and : on an II, the contribution to U(f,P)L(f,P)U(f,P)-L(f,P) is the oscillation on II times the interval length.

Examples:

  • If ff is constant on AA, then osc(f;A)=0\operatorname{osc}(f;A)=0.
  • For f(x)=xf(x)=x on A=[0,1]A=[0,1], osc(f;A)=10=1\operatorname{osc}(f;A)=1-0=1.
  • For f=1Qf=\mathbf{1}_{\mathbb{Q}} on any nontrivial interval IRI\subset\mathbb{R}, osc(f;I)=10=1\operatorname{osc}(f;I)=1-0=1.