Multiple (Riemann) integral over a rectangle

The Riemann integral of a function on a rectangle in R^n, defined via partitions and Riemann sums
Multiple (Riemann) integral over a rectangle

Let R=j=1n[aj,bj]RnR=\prod_{j=1}^n [a_j,b_j]\subseteq \mathbb{R}^n be a rectangle and let f:RRf:R\to\mathbb{R} be bounded.

A partition PP of RR is a finite collection of subrectangles whose union is RR and whose interiors are pairwise disjoint (typically produced by partitioning each coordinate interval). For each subrectangle QRQ\subseteq R, let MQ=supxQf(x),mQ=infxQf(x),vol(Q)=j=1n(side length in coordinate j).M_Q=\sup_{x\in Q} f(x), \qquad m_Q=\inf_{x\in Q} f(x), \qquad \operatorname{vol}(Q)=\prod_{j=1}^n (\text{side length in coordinate }j). Define the upper sum and lower sum U(f,P)=QPMQvol(Q),L(f,P)=QPmQvol(Q).U(f,P)=\sum_{Q\in P} M_Q\,\operatorname{vol}(Q), \qquad L(f,P)=\sum_{Q\in P} m_Q\,\operatorname{vol}(Q).

The function ff is Riemann integrable over RR if supPL(f,P)=infPU(f,P),\sup_P L(f,P)=\inf_P U(f,P), and in that case the common value is the multiple (Riemann) integral of ff over RR, denoted Rf(x)dx.\int_R f(x)\,dx.

Multiple Riemann integrals generalize the usual one-dimensional integral to higher dimensions and are the starting point for and .

Examples:

  • If f(x)=1f(x)=1 on RR, then R1dx=vol(R)=j=1n(bjaj)\int_R 1\,dx=\operatorname{vol}(R)=\prod_{j=1}^n (b_j-a_j).
  • If R=[0,1]×[0,1]R=[0,1]\times[0,1] and f(x,y)=x+yf(x,y)=x+y, then R(x+y)d(x,y)=12+12=1\int_R (x+y)\,d(x,y)=\frac{1}{2}+\frac{1}{2}=1.
  • The indicator function of a rectangle is Riemann integrable; more generally, indicators of sets with sufficiently “small” boundary are integrable.