Modulus (absolute value) on ℂ

The nonnegative magnitude |z| of a complex number z, equal to its distance from 0.
Modulus (absolute value) on ℂ

For z=a+biCz=a+bi\in\mathbb{C}, the modulus (or absolute value) of zz is

z:=a2+b2=zz.|z|:=\sqrt{a^2+b^2}=\sqrt{z\overline{z}}.

The modulus makes C\mathbb{C} into a normed space and induces the standard metric d(z,w)=zwd(z,w)=|z-w|. It is the complex analogue of absolute value and is crucial for convergence of complex sequences and series.

Examples:

  • If z=34iz=3-4i, then z=32+(4)2=5|z|=\sqrt{3^2+(-4)^2}=5.
  • If zRCz\in\mathbb{R}\subseteq\mathbb{C}, then this definition agrees with the real absolute value.
  • eiθ=1|e^{i\theta}|=1 for all θR\theta\in\mathbb{R} (Euler’s formula context).