Mesh of a partition

The maximum subinterval length in a partition of [a,b].
Mesh of a partition

Let PP be a partition of [a,b][a,b] given by a=x0<<xn=ba=x_0<\cdots<x_n=b. The mesh (or norm) of PP is

P:=max1in(xixi1)=max1inΔxi.\|P\| := \max_{1\le i\le n}(x_i-x_{i-1})=\max_{1\le i\le n}\Delta x_i.

The mesh measures how fine a partition is. Many convergence statements for Riemann sums are phrased in terms of P0\|P\|\to 0.

Examples:

  • For the uniform partition xi=a+i(ba)/nx_i=a+i(b-a)/n, one has P=(ba)/n\|P\|=(b-a)/n.
  • If P:0<0.9<1P:0<0.9<1, then P=0.9\|P\|=0.9.
  • Refining a partition cannot increase the mesh: if QQ refines PP, then QP\|Q\|\le \|P\|.