Mean value estimate lemma (differentiable maps)

Near a point where Df is continuous, f is uniformly close to its linearization
Mean value estimate lemma (differentiable maps)

Let URnU\subseteq\mathbb{R}^n be and let f:URmf:U\to\mathbb{R}^m be of . Fix aUa\in U.

Mean value estimate lemma: For every ε>0\varepsilon>0 there exists δ>0\delta>0 such that if x,yUx,y\in U satisfy xa<δ\|x-a\|<\delta, ya<δ\|y-a\|<\delta, and the line segment [x,y]U[x,y]\subseteq U, then f(x)f(y)Df(a)(xy)εxy. \|f(x)-f(y)-Df(a)(x-y)\|\le \varepsilon\,\|x-y\|. In particular, f(x)f(y)(Df(a)+ε)xy. \|f(x)-f(y)\|\le \bigl(\|Df(a)\|+\varepsilon\bigr)\,\|x-y\|.

This estimate is a standard quantitative form of used in proofs of the and : it says that on sufficiently small scales, ff behaves like the Df(a)Df(a) with a uniformly small relative error.

Proof sketch: Using the along the segment γ(t)=x+t(yx)\gamma(t)=x+t(y-x), f(y)f(x)=01Df(γ(t))(yx)dt. f(y)-f(x)=\int_0^1 Df(\gamma(t))(y-x)\,dt. Subtract Df(a)(yx)Df(a)(y-x) and take norms: f(y)f(x)Df(a)(yx)01Df(γ(t))Df(a)dt  yx. \|f(y)-f(x)-Df(a)(y-x)\| \le \int_0^1 \|Df(\gamma(t))-Df(a)\|\,dt\;\|y-x\|. of DfDf at aa gives δ\delta such that Df(z)Df(a)<ε\|Df(z)-Df(a)\|<\varepsilon whenever za<δ\|z-a\|<\delta, and γ(t)\gamma(t) stays within that ball when x,yx,y do.