Lower sum (Riemann)

A weighted sum of infima of f over subintervals of a partition.
Lower sum (Riemann)

Let f:[a,b]Rf:[a,b]\to\mathbb{R} be bounded and let P:a=x0<<xn=bP:a=x_0<\cdots<x_n=b be a partition. For each subinterval, define

mi:=inf{f(x):x[xi1,xi]}.m_i := \inf\{f(x): x\in[x_{i-1},x_i]\}.

The lower sum of ff with respect to PP is

L(f,P):=i=1nmi(xixi1).L(f,P) := \sum_{i=1}^n m_i\, (x_i-x_{i-1}).

Lower sums approximate the integral from below. As the partition is refined, lower sums increase (or stay the same).

Examples:

  • If f(x)=xf(x)=x on [0,1][0,1] and P:0<1/2<1P:0<1/2<1, then m1=0m_1=0, m2=1/2m_2=1/2, so L(f,P)=012+1212=14L(f,P)=0\cdot\frac12+\frac12\cdot\frac12=\frac14.
  • If f(x)=cf(x)=c is constant, then L(f,P)=c(ba)L(f,P)=c(b-a) for every PP.
  • For f=1Qf=\mathbf{1}_{\mathbb{Q}} on [0,1][0,1], every subinterval has mi=0m_i=0 and Mi=1M_i=1, so L(f,P)=0L(f,P)=0 and U(f,P)=1U(f,P)=1 for all PP.