Limit superior (lim sup)

For a real sequence, the limit of the tail suprema, describing the maximal subsequential limit.
Limit superior (lim sup)

Let (an)(a_n) be a sequence in the extended real line [,][-\infty,\infty]. Define the tail suprema

sn:=sup{ak:kn}[,].s_n := \sup\{a_k : k\ge n\}\in[-\infty,\infty].

Then the limit superior of (an)(a_n) is

lim supnan:=limnsn,\limsup_{n\to\infty} a_n := \lim_{n\to\infty} s_n,

where the limit exists in [,][-\infty,\infty] because (sn)(s_n) is nonincreasing.

The number lim supan\limsup a_n is the largest value that subsequences can “accumulate at” (more precisely, it equals the supremum of all subsequential limits when those limits are taken in [,][-\infty,\infty]).

Examples:

  • If an=(1)na_n=(-1)^n, then lim supan=1\limsup a_n = 1.
  • If an=1/na_n=1/n, then lim supan=0\limsup a_n = 0.
  • If an=na_n=n, then lim supan=+\limsup a_n = +\infty.