Limit of a function at a point

The value L that f(x) approaches as x approaches x0, defined by an ε–δ condition.
Limit of a function at a point

Let (X,dX)(X,d_X) and (Y,dY)(Y,d_Y) be , let EXE\subseteq X, let x0Xx_0\in X be a of EE (meaning every of x0x_0 meets E{x0}E\setminus\{x_0\}), and let f:EYf:E\to Y. We say that f(x)f(x) tends to LYL\in Y as xx0x\to x_0, written

limxx0f(x)=L,\lim_{x\to x_0} f(x)=L,

if

ε>0, δ>0 such that xE, (0<dX(x,x0)<δdY(f(x),L)<ε).\forall \varepsilon>0,\ \exists \delta>0\ \text{such that}\ \forall x\in E,\ \bigl(0<d_X(x,x_0)<\delta \Rightarrow d_Y(f(x),L)<\varepsilon\bigr).

This definition captures the local behavior of ff near x0x_0 independent of the value of ff at x0x_0. It is the foundation for and .

Examples:

  • For f:R{0}Rf:\mathbb{R}\setminus\{0\}\to\mathbb{R} given by f(x)=sinx/xf(x)=\sin x/x, one has limx0f(x)=1\lim_{x\to 0} f(x)=1 (a standard analytic limit).
  • For f(x)=x2f(x)=x^2 on R\mathbb{R}, limxaf(x)=a2\lim_{x\to a} f(x)=a^2 for every aRa\in\mathbb{R}.
  • If f(x)=1/xf(x)=1/x on R{0}\mathbb{R}\setminus\{0\}, then limx0f(x)\lim_{x\to 0} f(x) does not exist in R\mathbb{R}.