Limit inferior (lim inf)

For a real sequence, the limit of the tail infima, describing the minimal subsequential limit.
Limit inferior (lim inf)

Let (an)(a_n) be a sequence in the extended real line [,][-\infty,\infty]. Define the tail infima

in:=inf{ak:kn}[,].i_n := \inf\{a_k : k\ge n\}\in[-\infty,\infty].

Then the limit inferior of (an)(a_n) is

lim infnan:=limnin,\liminf_{n\to\infty} a_n := \lim_{n\to\infty} i_n,

where the limit exists in [,][-\infty,\infty] because (in)(i_n) is nondecreasing.

The number lim infan\liminf a_n is the smallest value that subsequences can “accumulate at” (it equals the infimum of all subsequential limits in [,][-\infty,\infty]).

Examples:

  • If an=(1)na_n=(-1)^n, then lim infan=1\liminf a_n = -1.
  • If an=1/na_n=1/n, then lim infan=0\liminf a_n = 0.
  • If an=na_n=-n, then lim infan=\liminf a_n = -\infty.