L'Hôpital's Rule

Evaluates certain indeterminate limits using the limit of a quotient of derivatives
L'Hôpital's Rule

L’Hôpital’s Rule (0/0 form, one-sided): Let a<ba<b, and let f,g:[a,b)Rf,g:[a,b)\to\mathbb{R} be on [a,b)[a,b) and on (a,b)(a,b). Assume:

  • f(a)=g(a)=0f(a)=g(a)=0,
  • g(x)0g'(x)\neq 0 for all x(a,b)x\in(a,b),
  • the limit L=limxa+f(x)g(x)L=\lim_{x\to a^+}\frac{f'(x)}{g'(x)} exists in R{±}\mathbb{R}\cup\{\pm\infty\}.

Then the limit limxa+f(x)g(x)\lim_{x\to a^+}\frac{f(x)}{g(x)} exists and equals LL: limxa+f(x)g(x)=limxa+f(x)g(x)=L. \lim_{x\to a^+}\frac{f(x)}{g(x)}=\lim_{x\to a^+}\frac{f'(x)}{g'(x)}=L.

This rule is a standard tool for evaluating difficult limits, but it must be used with all hypotheses in place (especially the differentiability and nonvanishing of gg' near the limit point).

Proof sketch: For x(a,b)x\in(a,b), apply the to ff and gg on [a,x][a,x]. There exists c(a,x)c\in(a,x) such that f(x)f(a)g(x)g(a)=f(c)g(c). \frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(c)}{g'(c)}. Since f(a)=g(a)=0f(a)=g(a)=0, this becomes f(x)g(x)=f(c)g(c)\frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)}. As xa+x\to a^+ we have ca+c\to a^+, and the right-hand side tends to LL.