Jacobian matrix

The matrix of first partial derivatives of a map f:ℝ^k→ℝ^m.
Jacobian matrix

Let URkU\subseteq\mathbb{R}^k be and let f:URmf:U\to\mathbb{R}^m with components f=(f1,,fm)f=(f_1,\dots,f_m), where each fi:URf_i:U\to\mathbb{R}. If all relevant exist at aUa\in U, the Jacobian matrix of ff at aa is the m×km\times k matrix

Jf(a):=[fixj(a)]1im, 1jk. J_f(a) := \left[\frac{\partial f_i}{\partial x_j}(a)\right]_{1\le i\le m,\ 1\le j\le k}.

When ff is at aa in the ( ) sense, Jf(a)J_f(a) represents the derivative as a RkRm\mathbb{R}^k\to\mathbb{R}^m with respect to the standard bases.

Examples:

  • If f(x,y)=(x+y,xy)f(x,y)=(x+y,x-y), then Jf(x,y)=(1111).J_f(x,y)=\begin{pmatrix}1&1\\ 1&-1\end{pmatrix}.
  • If f:R2Rf:\mathbb{R}^2\to\mathbb{R} is scalar-valued, then Jf(a)J_f(a) is a 1×21\times 2 row vector (the transpose of the gradient).
  • For a linear map f(x)=Axf(x)=Ax, Jf(a)=AJ_f(a)=A for all aa.