Jacobian determinant

For f:ℝ^k→ℝ^k, the determinant det(J_f) controlling local volume scaling.
Jacobian determinant

Let URkU\subseteq\mathbb{R}^k be and let f:URkf:U\to\mathbb{R}^k. If ff has a Jf(a)J_f(a) at aUa\in U, the Jacobian determinant of ff at aa is

detJf(a)R.\det J_f(a)\in\mathbb{R}.

When ff is , detJf(a)0\det J_f(a)\neq 0 is the nondegeneracy condition in the inverse function theorem. In integration, detJf|\det J_f| appears in the change-of-variables formula as the local volume scaling factor.

Examples:

  • If f(x)=Axf(x)=Ax is linear on Rk\mathbb{R}^k, then detJf(a)=detA\det J_f(a)=\det A for all aa.
  • For f(x,y)=(2x,3y)f(x,y)=(2x,3y), Jf=(2003)J_f=\begin{pmatrix}2&0\\0&3\end{pmatrix} so detJf=6\det J_f=6.
  • For a rotation in R2\mathbb{R}^2, detJf=1\det J_f=1 (orientation-preserving and area-preserving).