Isometry

A distance-preserving map between metric spaces.
Isometry

Let (X,dX)(X,d_X) and (Y,dY)(Y,d_Y) be . A function f:XYf:X\to Y is an isometry if

x1,x2X,dY(f(x1),f(x2))=dX(x1,x2).\forall x_1,x_2\in X,\quad d_Y\bigl(f(x_1),f(x_2)\bigr)=d_X(x_1,x_2).

Isometries preserve all metric structure: , , , and (when ff is onto its image) the induced topology. They are the natural notion of “rigid motion” in metric spaces.

Examples:

  • The translation Ta:RRT_a:\mathbb{R}\to\mathbb{R} given by Ta(x)=x+aT_a(x)=x+a is an isometry for the metric xy|x-y|.
  • The rotation R:R2R2R:\mathbb{R}^2\to\mathbb{R}^2 about the origin is an isometry for Euclidean distance.
  • The map f:RRf:\mathbb{R}\to\mathbb{R}, f(x)=2xf(x)=2x, is not an isometry (it scales distances by 22).