Interior

The largest open set contained in a given set.
Interior

Let (X,d)(X,d) be a and let AXA\subseteq X. The interior of AA, denoted int(A)\operatorname{int}(A) (or AA^\circ), is the set

int(A):={xA:r>0 with B(x,r)A}\operatorname{int}(A):=\{x\in A : \exists r>0\ \text{with}\ B(x,r)\subseteq A\}

(see ).

Equivalently, int(A)\operatorname{int}(A) is the union of all contained in AA. The interior captures the points of AA that are not “on the edge” (compare with ).

Examples:

  • In R\mathbb{R}, int([0,1])=(0,1)\operatorname{int}([0,1])=(0,1).
  • In R2\mathbb{R}^2, the interior of the closed unit disk B(0,1)\overline{B}(0,1) is the open unit disk B(0,1)B(0,1).
  • If A=QRA=\mathbb{Q}\subseteq\mathbb{R}, then int(A)=\operatorname{int}(A)=\varnothing.