Integrator function (Riemann–Stieltjes)

The function α whose increments define the weights in Riemann–Stieltjes sums.
Integrator function (Riemann–Stieltjes)

In the Riemann–Stieltjes integral abfdα\int_a^b f\,d\alpha, the function

α:[a,b]R\alpha:[a,b]\to\mathbb{R}

is called the integrator (or integrator function). For a partition P:a=x0<<xn=bP:a=x_0<\cdots<x_n=b, the weights are the increments

Δαi=α(xi)α(xi1).\Delta\alpha_i=\alpha(x_i)-\alpha(x_{i-1}).

Typically one assumes α\alpha is increasing (or more generally of bounded variation) to ensure good behavior of the integral and to guarantee that upper/lower sum definitions make sense.

Examples:

  • For the usual Riemann integral, the integrator is α(x)=x\alpha(x)=x.
  • If α(x)=x2\alpha(x)=x^2 (increasing on [0,)[0,\infty)), then abfdα\int_a^b f\,d\alpha weights subintervals according to changes in x2x^2.
  • If α\alpha has jumps, the integral can encode discrete contributions (a classical motivation for Stieltjes integration).