Integral Test

A positive decreasing series converges iff the corresponding improper integral converges
Integral Test

Integral Test: Let f:[1,)Rf:[1,\infty)\to\mathbb{R} be positive, decreasing, and continuous, and set an=f(n)a_n=f(n). Then n=1an converges 1f(x)dx converges.\sum_{n=1}^\infty a_n \text{ converges } \Longleftrightarrow \int_1^\infty f(x)\,dx \text{ converges}.

The integral test connects to calculus and provides error estimates by comparing to areas under ff.

Proof sketch (optional): Compare the area under ff on [n,n+1][n,n+1] with rectangles of height f(n)f(n) and f(n+1)f(n+1) to trap the tail k=nf(k)\sum_{k=n}^\infty f(k) between integrals.