Inner product on ℝ^k

The dot product ⟨x,y⟩ = sum xi yi defining angles and lengths in ℝ^k.
Inner product on ℝ^k

For x=(x1,,xk)x=(x_1,\dots,x_k) and y=(y1,,yk)y=(y_1,\dots,y_k) in Rk\mathbb{R}^k, the (standard) inner product is

x,y:=i=1kxiyi.\langle x,y\rangle := \sum_{i=1}^k x_i y_i.

The inner product is bilinear, symmetric, and positive definite, and it generates the Euclidean norm by x2=x,x\|x\|_2=\sqrt{\langle x,x\rangle}. It is the algebraic structure behind orthogonality, projections, and many inequalities.

Examples:

  • In R2\mathbb{R}^2, (1,2),(3,4)=13+24=11\langle (1,2),(3,4)\rangle = 1\cdot 3 + 2\cdot 4 = 11.
  • x,x0\langle x,x\rangle \ge 0 for all xx, with equality iff x=0x=0.
  • If x=(1,0)x=(1,0) and y=(0,1)y=(0,1), then x,y=0\langle x,y\rangle=0.