Injective function

A function that never maps two distinct inputs to the same output.
Injective function

A f:XYf:X\to Y is injective (or one-to-one) if

x1,x2X, (f(x1)=f(x2)x1=x2).\forall x_1,x_2\in X,\ \bigl(f(x_1)=f(x_2)\Rightarrow x_1=x_2\bigr).

Injectivity means that outputs uniquely determine inputs (within the ). This is the exact condition needed for a (two-sided) to exist after restricting the to the .

Examples:

  • f:RRf:\mathbb{R}\to\mathbb{R}, f(x)=x3f(x)=x^3 is injective.
  • f:RRf:\mathbb{R}\to\mathbb{R}, f(x)=x2f(x)=x^2 is not injective since f(1)=f(1)=1f(1)=f(-1)=1.
  • The restriction xx2x\mapsto x^2 on [0,)[0,\infty) is injective.